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Abstract

Policies to reduce greenhouse gas emissions from transportation fuels often take the form of renewable

fuel mandates rather than taxes or cap-and-trade programs. Delays in the development and deployment

of new technologies when binding mandates exist for their use may lead to situations with high compliance

costs. We study the effects and efficiency of two mandates, a renewable share mandate and a carbon

intensity standard, with and without a cost containment mechanism. Using both a theoretical model of

a regulated fuel industry and a numerical model of the U.S. fuel market, we show that cost containment

mechanisms can have the benefit of both constraining compliance costs and limiting deadweight loss.

According to our numerical results, an optimally set mandate alone leads to only modest gains over

business as usual welfare levels. The efficiency of both policies, especially carbon intensity standards,

can increase substantially when combined with a cost containment mechanism.
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1 Introduction

The transportation sector is responsible for over a quarter of U.S. greenhouse gas emissions, the majority

of which result from fossil fuel combustion. Politicians and regulatory agencies in the U.S. have passed

or considered a suite of policies to decrease emissions in the sector, including carbon taxes, fuel economy

standards, renewable fuel mandates, and regional or federal emissions trading programs. If unpriced emissions

are the sole market failure, a carbon tax or cap-and-trade program can achieve the first-best market allocation

(Pigou, 1920; Coase, 1960), while renewable fuel mandates are strictly second-best (Helfand, 1992; Holland

et al., 2009; Lapan and Moschini, 2012). Despite this, policies to reduce greenhouse gas emissions from

transportation fuels often take the form of renewable fuel mandates rather than taxes or cap-and-trade

programs, due at least in part to political economy reasons (Knittel, 2013; Metcalf, 2009b).

The most prominent fuel mandates in the U.S. currently are the federal Renewable Fuel Standard (RFS),

a renewable fuel share mandate, and California’s Low Carbon Fuel Standard (LCFS), a carbon intensity

standard. To comply with renewable fuel mandates, both upstream firms and downstream consumers must

invest in new technologies and incur compliance costs that may be particularly high in the short run. For

example, the RFS requires 36 billion gallons (bgals) of ethanol to be blended into the U.S. fuel supply

each year by 2022, of which 16 billion gallons must be biofuel derived from cellulosic feedstocks. Meeting

these targets will require tremendous investments in the research and development, commercialization, and

production of cellulosic biofuels. Consumers must also purchase millions of vehicles capable of using high-

ethanol blend fuels.

Delays in the development and deployment of new technologies when binding mandates exist for their

use may lead to situations with high short-run compliance costs. The problem compounds if compliance

credits are bankable, in which case the anticipation of high future compliance costs may lead to significant

increases in credit prices in the present. This situation has already borne out under the RFS. In 2013,

the fuel industry anticipated that the statutory mandates would become increasingly challenging to meet

beyond 2014. Markets responded, and RFS compliance credit prices increased from $0.10/gal to $1.40/gal

in just a few months. The large and sudden increase in compliance costs set off a prolonged period of

regulatory uncertainty and delay as the EPA considered how to best address these challenges. The Agency

eventually relaxed the mandates, reducing the incentive to invest in the technologies required to meet the

future objectives of the RFS (Lade et al., 2018b).

This paper studies the market effects of and efficiency gains from including cost containment mechanisms

in renewable fuel mandates. We formalize, expand upon, and synthesize the previous literature studying

renewable fuel mandates by developing a model of mandates that incorporates both a renewable share

mandate and a carbon intensity standard, both with and without a cost containment mechanism, in a unified

framework. The particular cost containment mechanism we consider is a credit window for compliance credits
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whereby firms have the option to purchase compliance credits directly from the regulator at a given credit

window price.

When market outcomes are uncertain, a policy that places a ceiling on compliance costs can eliminate

low probability, high compliance cost events and increase the policy’s efficiency (Newell et al., 2005; Nemet,

2010). The existing literature has traditionally considered cost containment mechanisms as tools that may

increase program efficiency by decreasing compliance cost uncertainty (Newell et al., 2005; Nemet, 2010; Fell

et al., 2012; Fell, 2016). We show that cost containment mechanisms may substantially increase a policy’s

efficiency even in settings with no uncertainty. In particular, we show that whenever the marginal cost of

renewable fuels is high relative to fossil fuels, cost containment mechanisms constrain compliance costs and

limit deadweight loss. If both the mandate and cost containment mechanisms are set optimally, the policy’s

efficiency increases substantially over optimally setting the fuel mandates alone. In a limiting case, an LCFS

with an optimal cost containment mechanism can achieve the first-best outcome. Further, we derive intuitive,

easy-to-calculate upper bounds to guide policy in setting an efficient cost containment mechanism. Namely,

the policy should ensure that the implicit fossil-fuel tax is below the first-best fossil fuel tax.

Our numerical model allows for two fuel markets – a gasoline and a diesel sector – and five fuels – gasoline,

corn ethanol, cellulosic ethanol, diesel, and biodiesel – and reflects 2019 market conditions. We consider two

scenarios. In the first scenario, biodiesel and cellulosic ethanol fuel are available at (approximately) their

2019 levels and have low fuel supply elasticities, reflecting current market conditions where it is expensive

to expand production of either fuel. In the second scenario, biodiesel and cellulosic ethanol production are

four times their 2019 levels and have higher fuel supply elasticities. Given our focus on medium- to long-run

policies, we assume there are no relevant blending constraints in either scenario. Thus, the only relevant

cost-driver in both scenarios is from the supply-side.

We show that cost containment mechanisms can lead to large efficiency gains when policies are set at

levels similar to the long-run RFS and LCFS objectives. An optimally set credit window reduces deadweight

loss by $795 million/year with a 25% RFS, roughly the magnitude envisioned under the original RFS2

mandates. Potential gains are much larger, $7.5 billion/year, for an LCFS with a 12% carbon intensity (CI)

reduction, the levels set under the original LCFS. Further, we show that cost containment mechanisms can

lead to substantive efficiency gains even at lower mandate levels. Our results highlight how, rather than

relaxing or revisiting unrealistic mandate levels after they are unmet, strategically setting cost containment

mechanisms can increase the policies’ efficiency.

Our paper builds on an extensive literature studying fuel mandates, environmental policy design, and cost

containment mechanisms. Many authors have studied the market effects of carbon intensity standards and

renewable fuel mandates (de Gorter and Just, 2009; Holland et al., 2009; Lapan and Moschini, 2012; Moschini

et al., 2017; Just, 2017; Ghoddusi, 2017; Korting et al., 2019; Irwin et al., 2020; Afkhami and Ghoddusi,

2020). Others build on these studies, comparing the relative performance of fuel mandates to more traditional
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policy instruments such as carbon taxes (Holland et al., 2013, 2014; Chen et al., 2014; Yeh et al., 2020),

or subsidies for production, investment, or entry (Yi et al., 2021); studying unintended consequences of the

policies and their relative efficiency when the mandates are anticipated (Okullo et al., 2021) or when markets

are imperfectly competitive (Holland, 2012) or open to trade (Rajagopal et al., 2015); assessing the use of

a single policy instrument to address multiple market failures (Landry and Bento, 2020); examining ways

policymakers can increase the efficiency fuel mandates through strategic policy choices (Lemoine, 2017);

and analyzing how well mandates perform as incentives for innovation (Clancy and Moschini, 2018) or for

renewable natural gas adoption (Scheitrum, 2020).1

Our work also builds on the literature studying the effects and efficiency of hybrid price-quantity policies.

Roberts and Spence (1976) first proposed pairing a fixed non-compliance penalty and abatement subsidy

with a tradeable credit policy to bound compliance costs and reduce the expected social cost of a policy

when costs and benefits are uncertain. A large literature subsequently studied similar proposals, primarily

in the context of emission trading programs (Weitzman, 1978; Wilcoxen and McKibbin, 1997; Pizer, 2002;

Newell et al., 2005; Burtraw et al., 2010; Fell and Morgenstern, 2010). An emerging literature has considered

hybrid taxes, taxes that adjust to achieve an emission target (Metcalf, 2009a; Aldy, 2017; Aldy et al.,

2017; Hafstead et al., 2017; Hafstead and Williams III, 2020; Harris and Pizer, 2020). Burtraw et al.

(2020) propose a price-responsive supply of emissions allowances, where the number of allowances supplied

responds to market information about the costs of emissions reductions. Fischer et al. (2018) analyze the use

of strategic technology policy as a supplement to renewable energy standards. Previous literature shows that

a rate-based standard can achieve the first-best if coupled with an emissions tax (Holland et al., 2009) or a

consumption tax (Holland, 2012). We build on this work by analyzing if one can improve the efficiency of

renewable fuel mandates, including volumetric standards, by coupling the mandate with a cost containment

mechanism.

Our research has several policy implications. First, our research has timely information for the federal

Renewable Fuel Standard (RFS). The EPA is set to modify RFS2 mandates through 2022 (Bracmort, 2017)

and consider mandates for 2023 and beyond (Lade et al., 2018a). Both processes will benefit from under-

standing the market effects and efficiency gains from including cost containment mechanisms.2 Second, cost

containment provisions such as price floors and ceilings are increasingly common. The re-adoption of the

LCFS, approved in November 2015 and effective as of January 2016 (CARB, 2015b), includes a provision

for holding a Credit Clearance Market (CCM) and an associated maximum credit price (CARB, 2020). Our

1In addition, because the feedstocks used for the production of corn-based ethanol can also be used for food, there is a

related literature on the effects of ethanol policies on the relationship between food and fuel markets (Runge and Senauer, 2007;

Rajagopal et al., 2007; Wright, 2014; Poudel et al., 2012; Abbott et al., 2008, 2009, 2011; de Gorter et al., 2013; Filip et al.,

2018).
2Although the RFS already has a cost containment mechanism similar to the one considered here (EPA, 2017), the current

mechanism applies only to the mandate’s cellulosic portion and has played only a limited role in containing compliance costs

in the program.
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work provides guidance on the optimal price ceilings for renewable fuel mandates.3 Third, renewable energy

mandates for new technologies exist in contexts other than the transportation fuel sector. Many states have

ambitious renewable portfolio standards that require significant investments in renewable electricity gener-

ation. The findings here have implications for the efficient design of renewable energy policies more broadly

to the extent that similar capacity constraints exist in these contexts.4

The paper proceeds as follows. Section 2 provides a brief background on the Renewable Fuel Standard and

the Low Carbon Fuel Standard, and discusses cost containment provisions that have either been considered or

implemented under each policy. Section 3 presents a theory model of a regulated fuel industry, analyzes the

effects of renewable fuel mandates and a cost containment mechanism on important market outcomes, derives

the second-best policies with and without cost containment, and examines the potential efficiency gains from

including cost containment mechanisms in renewable fuel mandates. Section 4 presents our numerical model,

expanding upon the theory model in Section 3 along several important dimensions. Section 5 concludes.

2 Renewable Fuel Mandates

We begin by discussing the regulatory background for both the Renewable Fuel Standard and various Low

Carbon Fuel Standards. We also discuss the essential design elements of each policy, focusing on the use and

importance of tradeable compliance credits. We then discuss several important implementation challenges

facing each policy.

2.1 Regulatory background and design

The Renewable Fuel Standard (RFS) was created by the Energy Policy Act of 2005 and expanded under

the Energy Independence and Security Act (EISA) of 2007, creating the RFS2.5 The EPA administers the

3While we focus on renewable fuel mandates, cost containment mechanisms are also prevalent in cap-and-trade policies.

For example, California amended its cap-and-trade program to include a price ceiling (CARB, 2018). The revised Regional

Greenhouse Gas Initiative (RGGI) model rule, which took into effect in 2014, added a cost containment reserve (CCR) to the

cap-and-trade system (Ramseur, 2019). As part of its 2016 program review, RGGI considered a new provision, known as an

emissions containment reserve (ECR), that would incorporate a minimum price for specified quantities of allowances under the

cap and introduce steps into the allowance supply function (Burtraw et al., 2017). The revised European Union Emissions

Trading System (EU ETS) also includes cost containment to mitigate excessive price fluctuations in the allowance market. The

provision began in 2013 and applies if, for more than six consecutive months, the allowance price is more than three times the

average price of allowances during the two preceding years on the European market (European Commission, 2020).
4Many renewable portfolio standards already include cost containment mechanisms, such as Alternative Compliance Pay-

ments in Massachusetts (Mass.gov, 2021), New Jersey (DSIRE, 2018), Ohio (PUCO, 2020), Maryland, and Delaware, among

other states (Bird et al., 2011; Barbose, 2019).
5In addition to the federal RFS, state-level renewable share mandates have been implemented in Oregon, Washingon,

Minnesota, Missouri, Louisiana, and Pennsylvania (Center for Climate and Energy Solutions, 2019).
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policy, which set ambitious targets for renewable fuel consumption in the U.S., intending to expand biofuel

use to 36 billion gallons (bgal) per year by 2022.6 The RFS2 specifies sub-mandates for certain biofuels

including: (1) cellulosic biofuel; (2) biomass-based diesel; and (3) advanced biofuel.7 For example, the 2016

mandates require that 18.11 bgals of biofuel be blended into the U.S. fuel supply, of which 3.61 bgals must

be advanced biofuel. Of the advanced biofuel mandate, 1.9 bgals must be biodiesel, and 230 mgals must be

cellulosic biofuel.

Executive Order S-01-07 created California’s Low Carbon Fuel Standard (LCFS) in 2007, and the policy

has been in effect since 2011.8 The standard is administered by the California Air Resources Board (ARB)

and requires a 10% reduction in the average carbon intensity of fuels sold in the state by 2020. Unlike

the RFS, the LCFS is agnostic as to the fuels that can be used to meet the standard so long as the ARB

approves all production pathways and assigns fuels a carbon intensity (CI) value.9 For example, providers

of electricity for plug-in vehicles and hydrogen fuel producers may generate credits under the LCFS (CARB,

2015a).

Both the RFS and the LCFS are enforced using tradeable compliance credits. Obligated parties, primarily

upstream gasoline and diesel refiners, generate deficits in proportion to their fuel sales while qualifying

renewable fuel producers generate credits. These parties must account for their deficits by purchasing or

generating an equal number of credits by the end of each compliance period. Under the RFS, compliance

credits are known as Renewable Identification Numbers (RINs). Every gallon of approved renewable fuel

produced in or imported into the United States from a registered source is associated with a RIN. Whenever

a gallon of renewable fuel is blended into the U.S. fuel supply, the RIN is ‘detached’ from the fuel and able

to be sold to obligated parties.10 LCFS credits and deficits are denominated in tons of CO2 equivalent

(CO2e) and calculated using the spread between the fuels’ assigned carbon intensity (CI) value and the

standard.11 Obligated parties maintain compliance by purchasing credits from low-carbon fuel producers,

6If met, the policy would require around 25% of motor gasoline to contain ethanol.
7Cellulosic biofuels are fuels produced from non-edible biomass such as corn stover or switchgrass. Biomass-based diesel is

produced mostly from animal fats or vegetable oils such as soybean oil. Biofuels qualify as ‘advanced’ if their lifecycle greenhouse

gas emissions are below a threshold set by the EPA.
8California’s LFCS is an example of a carbon intensity standard since it requires that the average carbon intensity of fuels

be below a specified standard. While California’s LCFS is the largest carbon intensity standard for transportation fuels, British

Columbia and Oregon have similar policies in place, and Washington and the European Union have proposed instituting low

carbon fuel standards (British Columbia Ministry of Energy and Mines, 2014; Oregon Department of Environmental Quality,

2016; Pont et al., 2014; European Commission, 2014).
9Carbon intensity (CI) values represent the ARB’s estimate of the carbon equivalent emissions rate of a given fuel’s life-cycle

production process.
10RINs are differentiated by vintage year and fuel type to enforce banking restrictions and ensure the mandate for each

biofuel category is met.
11For example, every gallon of gasoline sold generates a deficit equal to the difference between gasoline’s CI and the standard.

Analogously, every gallon of fuel produced that has a lower CI than the standard generates a credit surplus equal to the difference

between the standard and its CI. Thus, credits (deficits) are generated only for the amount of emissions below (above) the

standard.
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producing or blending renewable fuels themselves, or lowering the carbon intensity of their fuel by changing

their production pathways.

2.2 Implementation challenges and cost containment mechanisms

The RFS and the LCFS face a number of challenges to their future success. The two most notable issues

are: (1) the ‘blend wall’, and (2) the slow development of commercial-scale low-carbon fuel production (Lade

et al., 2018a).

The blend wall refers to the notion that blending ethanol beyond a 10% rate in gasoline is costly. Ethanol

has historically been blended at two levels: E10, fuel containing 10% ethanol; and E85, fuel containing 65%-

85% ethanol. Vehicle owners must own flex-fuel vehicles (FFVs) to fuel with E85, and gasoline station owners

must invest in fueling infrastructure to offer the fuel. While many FFVs have been produced in the U.S.,

they are not located in regions with the highest density of E85 stations due to unintended consequences from

incentives for FFVs under U.S. fuel economy standards (Anderson and Sallee, 2011; Pouliot and Babcock,

2014). Increasing biofuel consumption beyond the blend wall in the near term requires either expanding E85

use or increasing biodiesel consumption where blending constraints are less binding. Both options are costly

due to a combination of high production costs and binding capacity constraints.12

Before 2013, the primary biofuel used for compliance towards both the RFS and LCFS was ethanol

derived from corn (EPA, 2013a; Yeh et al., 2013). The future success of the RFS2 and LCFS depends on the

development of advanced alternative fuels such as cellulosic biofuel. As of early 2015, cellulosic production

was far below the original RFS2 mandates (EIA, 2012; Rapier, 2018; Padella et al., 2019). Yeh et al. (2013)

found that California’s fuel mix in 2013 would only allow the industry to maintain compliance with the

LCFS through the end of 2013. Recent work highlights that these issues persist, and meeting 2030 targets

with the maximum compliance credit price currently set by the ARB will be challenging (Bushnell et al.,

2020).

Given these challenges, both the EPA and the California ARB have considered or enacted various cost

containment provisions. Like the mechanism studies here, the EPA allows parties to purchase cellulosic

waiver credits instead of blending cellulosic fuel. Nevertheless, the program is limited to just the cellulosic

portion of the mandate and makes up only a tiny fraction of total compliance.13 The EPA has instead

12Recent years have seen increased attention given to E15, fuel containing up to 15% ethanol. If widely adopted, E15 could

‘break’ the current blend wall since most gasoline-powered vehicles in use today can use the fuel. Nevertheless, for many reasons,

its use has been very limited to date (Lade, 2019).
13Obligated parties purchased just under 12 million credits in 2017, the latest year for which the EPA has reported data of

annual credits purchased. In that year, total cellulosic biofuel obligations were nearly 288 million gallons, and total renewable

fuel obligations were 17.8 billion gallons. The highest reported amount of cellulosic waiver credits purchased was in 2016 when

producers purchased just over 33 million credits (EPA, 2020, 2021).
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managed compliance costs primarily through adjusting mandates. The EPA has repeatedly used its cellulosic

biofuel waiver authority to reduce the cellulosic biofuel volume required, and, since 2014, to also reduce both

the advanced biofuel and total renewable fuel volume required (Bracmort, 2020). In November 2013, the

EPA proposed a substantial rollback of the RFS mandates for 2014 and beyond in response to high RIN

prices (EPA, 2013b). In California, the Air Resources Board released a white paper in May 2013 discussing

mechanisms to contain compliance costs including establishing a credit window or a low carbon credit

multiplier (CARB, 2014).14 In March 2014, the Board began a re-adoption process of the policy, and one of

the key provisions under consideration was the inclusion of a cost containment mechanism (CARB, 2013).

Re-adoption was approved in November 2015 and became effective in January 2016 (CARB, 2015b), and

included a provision for holding a Credit Clearance Market (CCM) and an associated maximum credit price

(CARB, 2020).

3 Model of Mandates

We develop a stylized model of mandates to study and build intuition regarding the market effects of

and efficiency gains from including cost containment mechanisms in renewable fuel mandates. Our model

incorporates both a renewable share mandate and a carbon intensity standard, both with and without a cost

containment mechanism, in a unified framework that expands on previous literature and synthesizes lessons

and intuition across different renewable fuel mandates in a setting with no uncertainty.

We consider a two-fuel model of a mandate with no uncertainty, a single compliance period, and a single

biofuel mandate. A competitive industry produces fuel of total quantity Q. Assume the industry uses two

inputs: (1) a conventional input, qc; and (2) a renewable input, qr.15 Assume the inputs are denominated in

such a way that they are perfect substitutes with Q = qc + qr. For example, if consumers value fuel’s energy

content, the units could be denominated in gasoline gallon equivalent (GGE) units.16 Suppose each input is

associated with an emission factor φj for j = c, r. The damages from aggregate emissions are captured by

the damage function D(φcqc + φrqr), where the marginal damage D′(·) from a unit of emissions is the same

for the two fuels.

14Lade and Lin (2013) compare the effectiveness of each of the ARB’s proposals in constraining compliance costs under the

LCFS. A low carbon credit multiplier acts similarly to relaxing the policy constraint, and is therefore not considered here.
15The assumption of two inputs is made for notational ease. While the qualitative results are not affected in the multi-fuel

case (Lade and Lin, 2013), not all the analytic results presented in this section generalize to the multi-fuel case. For example, a

numerical equivalence exists between a renewable fuel share mandate and carbon intensity standard in the two-fuel case. The

equivalence breaks down in the multi-fuel case. We examine the multi-fuel case in our numerical model in Section 4.
16Denominating in gasoline gallon equivalent (GGE) units may be needed if consumers value the energy content of fuel,

since a gallon of renewable fuel typically does not contain as much energy as a gallon of gasoline or diesel. A gallon of ethanol

has around 70% of the energy content of a gallon of gasoline. A gallon of biomass-based diesel has around 95% of the energy

content of conventional diesel.
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We model the market equilibrium using a representative firm. The fuel industry has increasing, convex

production costs Cc(qc) and Cr(qr) for conventional and renewable fuel, respectively, and consumers have

decreasing, weakly concave inverse demand for fuel P (Q).

We study two mandates: (1) a renewable share mandate similar to the RFS;17 and (2) an energy-based

carbon intensity standard similar to California’s LCFS. An RFS requires the share of renewable fuel to be

greater than a specified volume obligation. We write the constraint as qr ≥ αqc, where α is the renewable

share mandate set by the regulator. An LFCS requires that the average carbon intensity of fuels be below

a specified standard. We specify the LCFS as an energy-based carbon intensity standard, writing the policy

constraint as φcqc+φrqr

qc+qr ≤ σ, where σ is the carbon intensity standard set by the regulator.

For notational ease, we write the biofuel mandate as ϕ(qc, qr; θ) ≥ 0 to accommodate both a renewable

fuel share mandate and a carbon intensity standard, where:

[RFS:] ϕ(qc, qr; θ) = qr − αqc ≥ 0

[LCFS:] ϕ(qc, qr; θ) = (σ − φc)qc + (σ − φr)qr ≥ 0,

and where θ are the policy parameters with θ = α under the RFS and θ = σ under the LCFS.

Under a renewable fuel mandate, the representative firm’s problem can be written as:

max
qc≥0;qr≥0

P (qc + qr)− Cc(qc)− Cr(qr) + λ [ϕ(qc, qr; θ)] ,

where λ is the Lagrange multiplier on the mandate constraint, with λ ≥ 0 if the policy binds. The Karush-

Kuhn-Tucker optimality conditions are:

[qc :] P − ∂Cc

∂qc + λ∂ϕ(·)
∂qc ≤ 0 (1)

[qr :] P − ∂Cr

∂qr + λ∂ϕ(·)
∂qr ≤ 0 (2)

λ[ϕ(qc, qr; θ)] = 0.

Conditions (1) and (2) hold with equality for interior solutions, and the third condition states that either

the policy binds with equality, or the constraint is slack and λ = 0. For the RFS, the partial derivatives of

the policy function are given by ∂ϕ(·)
∂qc = −α < 0 and ∂ϕ(·)

∂qr = 1 > 0. For the LCFS, the partial derivatives of

the policy function are given by ∂ϕ(·)
∂qc = (σ − φc) < 0 and ∂ϕ(·)

∂qr = (σ − φr) > 0.

When the market for compliance credits is competitive, the representative firm’s Lagrange multiplier λ is

the equilibrium compliance credit price.18 The equilibrium compliance credit price λ can be used to construct

17Given our assumption of a single renewable fuel, we do not model the RFS using a nested mandate structure. Thus, our

model is most applicable to the overall biofuel mandate under the RFS.
18The proof follows Montgomery (1972): when firms can trade compliance credits, have perfect information, and face no

trading costs, marginal compliance costs are equalized to λ across all firms.
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direct measures of the policies’ costs. To see this, note that the value function for the representative firm is

given by:

V (qc∗, qr∗) = P (qc∗ + qr∗)− Cc(qc∗)− Cr(qr∗) + λ [ϕ(qc∗, qr∗, θ)] .

The Envelope Theorem implies that the marginal value to the representative firm of increasing each mandate

is ∂V (qc,qr)
∂α = −λqc for the RFS and ∂V (qc,qr)

∂σ = λQ for the LCFS. The difference in signs is due to the

different interpretations of each policy variable. For the RFS, as α increases, the mandated share of renewable

fuel increases, and the policy becomes more stringent. For the LCFS, as σ increases, the average carbon

intensity requirement on fuels increases, and the policy becomes less stringent.

3.1 The inefficiency of fuel mandates

Equations (1) and (2) summarize the previous research studying the two mandates (de Gorter and Just,

2009; Holland et al., 2009; Lapan and Moschini, 2012). The conditions state that the mandates implicitly

tax conventional fuels and subsidize renewable fuels. The implicit tax on conventional fuel is −λ∂ϕ(·)
∂qc and the

implicit subsidy for renewable fuel is λ∂ϕ(·)
∂qr . The tax and subsidy level is endogenous, where the compliance

credit price λ adjusts to the point where the mandate is just met whenever the policy binds. Owing to their

implicit subsidy on renewable fuels, whenever unpriced emissions are the sole market failure, fuel mandates

are unable to replicate the first-best solution (Helfand, 1992; Holland et al., 2009; Lapan and Moschini,

2012).19

3.2 Second-best fuel mandates

Despite the inefficiency of fuel mandates, a regulator may seek to set the fuel mandate policy optimally. The

optimizing regulator’s optimal mandate policy parameter θ choice problem can be written as:

max
θ

∫ Q

0

P (x)dx− Cc(qc)− Cr(qr)−D(φcqc + φrqr).

The first-order optimality conditions for a interior solution are given by:(
P − ∂Cc

∂qc
− φcD′(·)

)
dqc

dθ
+

(
P − ∂Cr

∂qr
− φrD′(·)

)
dqr

dθ
= 0.

For simplicity, assume a unique solution exists to the optimal fuel policy and that second-order conditions are

satisfied. Consider the optimal RFS. Substituting the firm’s optimality conditions for the RFS and making

use of Proposition A.1 in Appendix A, the optimality condition can be written as the following:

[αλ− φcD′(·)]︸ ︷︷ ︸
?

dqc

dα︸︷︷︸
<0

= [λ+ φrD′(·)]︸ ︷︷ ︸
>0

dqr

dα︸︷︷︸
?

,

19We analyze the effects of each fuel mandate on important market outcomes in Appendix A. Appendix B.1 provides a more

rigorous analysis of why fuel mandates cannot achieve the first-best outcome. Appendix B.2 present a graphical analysis of the

second-best nature of fuel mandates.
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where beneath each term in brackets we have indicated the sign of the bracketed term for terms that can

be signed and a question mark for terms whose signs are ambiguous. If dqr

dα > 0 the optimality condition is

satisfied only if αλ < φcD′(·), and the opposite holds if dqr

dα < 0.

Similarly, we can write the optimality condition for the LCFS as:

[(φc − σ)λ− φcD′(·)]︸ ︷︷ ︸
?

dqc

dσ︸︷︷︸
>0

= [(σ − φr)λ+ φrD′(·)]︸ ︷︷ ︸
>0

dqr

dσ︸︷︷︸
?

.

If dqr

dσ > 0 the condition is satisfied so long as (φc − σ)λ < φcD′(·), while the opposite holds if dqr

dσ < 0.

The conditions state that a second-best fuel mandate should be set at a level where the implicit tax

on conventional fuel is less than its marginal damages if increasing the policy stringency increases the

use of renewable fuel. The most recent estimates of the average social cost of carbon issued by the U.S.

government’s Interagency Working Group on Social Cost of Greenhouse Gases based on a 3% discount rate

is around $46/ton CO2 for 2025 (IAWG, 2016). Thus, our results imply that an optimal RFS and LCFS in

2025 should be set such that the implicit tax on gasoline and diesel is less than $46/ton.

3.3 Improving the second-best through cost containment

Suppose the regulator wishes to limit compliance costs. We model the cost containment mechanism as the

regulator offering a credit window for compliance credits. Under a credit window, firms have the option to

purchase compliance credits directly from the regulator at a given credit window price. The credits purchased

from the regulator would not be associated with the production of any renewable fuel but would increase

liquidity in the market.

Let c > 0 denote the number of credits bought from the regulator through the window and p̄cred be the

credit window price. The new policy constraints are:

[RFS:] ϕ(qc, qr, c; θ) = qr + c− αqc ≥ 0

[LCFS:] ϕ(qc, qr, c; θ) = (σ − φc)qc + (σ − φr)qr + c ≥ 0.

The representative firm’s problem is:

L = max
qc,qr,c≥0

P (qc + qr)− Cc(qc)− Cr(qr)− p̄credc+ λ [ϕi(q
c, qr, c; θ)] ,

with corresponding Karush-Kuhn-Tucker conditions:

[qc :] P − ∂Cc

∂qc + λ∂ϕ(·)
∂qc ≤ 0 (3)

[qr :] P − ∂Cr

∂qr + λ∂ϕ(·)
∂qr ≤ 0 (4)

[c :] λ− p̄cred ≤ 0 (5)

λ[ϕ(qc, qr; θ)] = 0.
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The conditions state that when a regulator offers a credit window, if marginal compliance costs are below the

credit price, firms will not purchase credits from the window, and marginal compliance costs are determined

as before. If marginal compliance costs reach or exceed the credit price, firms will purchase from the window,

and compliance credit prices will equal the credit window price p̄cred. Hence, the open credit window creates

a ceiling on marginal compliance costs.20

Suppose a regulator operates in an environment where enacting a fuel mandate is preferred to instituting

a carbon price, for example, due to political economy reasons. Furthermore, suppose the regulator is not

able to change the policy stringency, perhaps due to a legislative mandate, but can set the level of a cost

containment mechanism. Thus, the regulator’s problem is given by:

max
p̄cred|θ

∫ Q

0

P (x|θ)dx− Cc(qc|θ)− Cr(qr|θ)−D(φcqc + φrqr).

The optimality condition for an interior solution are given by:(
P (Q)− ∂Cc

∂qc
− φcD′(·)

)
dqc

dp̄cred
+

(
P (Q)− ∂Cr

∂qr
− φrD′(·)

)
dqr

dp̄cred
= 0.

As before, suppose a solution exists. Substituting the firm’s optimality conditions and making use of

Proposition A.1 in Appendix A, we obtain the following conditions for the optimal credit window price,

conditional on a given policy level α or σ:

[αp̄cred − φcD′(·)]︸ ︷︷ ︸
?

dqc

dp̄cred︸ ︷︷ ︸
<0

= [p̄cred + φrD′(·)]︸ ︷︷ ︸
>0

dqr

dα︸︷︷︸
>0

for the RFS, and:

[
(φc − σ)p̄cred − φcD′(·)

]︸ ︷︷ ︸
?

dqc

dp̄cred︸ ︷︷ ︸
>0

=
[
(σ − φr)p̄cred + φrD′(·)

]︸ ︷︷ ︸
>0

dqr

dp̄cred︸ ︷︷ ︸
>

for the LCFS. Thus, a necessary condition is for an optimum is that φcD′(·) > αp̄cred for the RFS, and

φcD′(·) > (φc − σ)p̄cred for the LCFS.

The conditions illustrate that the optimal credit window price, conditional on a given policy level α or σ,

shares many of the same features as the optimal policy levels. As before, the conditions state that the optimal

credit window price, conditional on a given policy level α or σ, should be set at a level where the implicit tax

on conventional fuel is less than its marginal damages. The credit window gives the regulator an additional

20We examine the market effects of a cost containment mechanism that caps compliance costs in Appendix A. Proposition

A.2 in Appendix A summarizes the comparative statics for the credit window price p̄cred when firms purchase from the credit

window.
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tool that can be used to increase the efficiency of a fuel mandate. For example, suppose that before enacting

the mandate a policymaker believes the marginal cost of the renewable fuel will be
∂Cr

L

∂qr . The anticipated

market clearing credit price is λL. Knowing an efficient policy requires the implicit tax on conventional

fuels to be below marginal damages, the policymakers chooses θ optimally and
(
−λL ∂ϕ(·)

∂qc

)
< ∂D

∂qc . Suppose,

however, that ex post, marginal costs are higher than the policymaker had anticipated and are given instead

by
∂Cr

H

∂qr >
∂Cr

L

∂qr . Compliance credit prices adjust endogenously, and ex post compliance credit prices are

λH > λL. Suppose ex post credit prices adjust such that
(
−λH ∂ϕ(·)

∂qc

)
> ∂D

∂qc . Clearly, the policy is

inefficient. By establishing a credit window ex ante, however, the regulator can correct this. Assuming the

initial standard was set second-best optimally given the anticipated credit prices λL, the regulator could set

p̄cred = λL to achieve the ex-ante policy goal.

With a cost containment mechanism as an additional policy lever, a regulator may wish to optimally

choose both the mandate policy θ and the credit window price simultaneously. Inspecting the optimality

conditions reveals a key feature of an LCFS. With a LCFS, setting the LCFS mandate level to σ = 0 and

the credit window price to p̄cred = D′(·) replicates the first-best optimality conditions in equation (B.1). In

contrast, with a RFS, no combination of the RFS mandate level α and credit window price p̄cred can replicate

the first-best optimality conditions.21 The result raises an important distinction between the RFS and the

LCFS. By differentiating fuels based on their carbon intensity factors, an LCFS can achieve more efficient

outcomes than the RFS.

Setting the mandate under an LCFS to σ = 0 and the credit window price to p̄cred = D′(·) transforms

the LCFS to a carbon tax. Policymakers may be better able to overcome the political economy and other

barriers to a carbon tax or cap-and-trade program and achieve the first-best by framing what is effectively

a carbon tax as a renewable fuel mandate instead (Knittel, 2013; Metcalf, 2009b). In particular, if a carbon

tax becomes politically feasible when it is instead framed as an LCFS with a mandate of σ = 0 and a credit

window price of p̄cred = D′(·), then our results suggest a politically feasible means of implementing the first-

best. Further, while setting σ = 0 may be infeasible if no ‘zero-carbon’ technologies exist, we show in Section

4 that setting the most aggressive ‘technologically feasible’ LCFS can substantially reduce the deadweight

loss from an LCFS. Aggressive carbon policies such as those considered here are not out of the ordinary.

Many communities across the U.S. have committed to 100% renewable, clean energy mandates in the last few

years (Sierra Club, 2020). Relevant to this study, the original RFS2 mandated 16 bgals of cellulosic ethanol

by 2022, before any commercial production was available. California also recently committed to an 80%

GHG reduction target by 2050, and will presumably rely heavily on GHG reductions from transportation

fuels through future LCFS rulemaking (EIA, 2018a).

21The same would remain true for a nested renewable share mandate structure. While the nested mandate levels and credit

window prices may be adjusted, yielding efficiency gains beyond using only an overall mandate, the lowest-tiered mandate will

always serve as an implicit subsidy for the lowest tiered renewable fuel, preventing the renewable share mandate policy from

achieving the first-best.
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Previous literature shows that a rate-based standard can achieve the first-best if it is coupled with an

emissions tax (Holland et al., 2009) or a consumption tax (Holland, 2012). Our result is an extension of

these previous results. We further innovate upon the previous literature by analyzing if one can improve

the efficiency of volumetric standards such as the RFS by coupling the mandate with cost containment

mechanisms. While one cannot achieve the first-best under the RFS even when combined with a credit

window price, the analytic conditions above show that it is possible to improve the efficiency of an RFS by

coupling it with a credit window price. In our numerical model below, we solve for the optimal combinations

of policy level and cost containment mechanism and analyze the efficiency gains from choosing both the

policy level and cost containment level optimally.

4 Simulation of the U.S. fuel market

We develop a numerical model of the U.S. fuel market to better understand the relative performance and

market effects of the fuel mandates and cost containment mechanism. Our numerical model examines the

multi-fuel case and expands upon the theoretical model in Section 3 along several important dimensions. We

allow for two consumer fuel markets, motor (ethanol-blended) gasoline and motor (biodiesel-blended) diesel.

Gasoline consumers demand energy in gasoline gallon equivalent (GGE) units, and motor gasoline producers

produce three motor gasoline fuels: (1) gasoline, (2) corn ethanol, and (3) cellulosic ethanol. Diesel demand

is similarly specified in GGE units, and diesel fuel producers produce: (1) diesel, and (2) biodiesel.22

Table 1 presents the parameters used in the simulation model. We calibrate the model so that fuel prices

and the supply of gasoline, diesel, and corn ethanol are similar to those in 2019. We explore the sensitivity of

the model to assuming that low-carbon cellulosic ethanol and biodiesel are readily available versus available

at around their 2019 production levels. All supply and demand functions are assumed to have constant

elasticity. The elasticity of demand is set to reflect recent estimates in the literature (Hughes et al., 2012;

Coyle et al., 2012; Dahl, 2012; Lin and Prince, 2013).

Fuel supply elasticities in the literature typically reflect either short-run or very long-run elasticities (Dahl

and Duggan, 1996; Coyle et al., 2012; Marion and Muehlegger, 2011; Luchansky and Monks, 2009; Lee and

Sumner, 2010). Most fuel mandates phase in over time and do not reach steady-state mandate levels for

a decade or more. Given the static nature of the model, we seek to capture efficient medium- to long-run

policies and therefore choose mid-range supply elasticities to reflect this.23

22Renewable diesel has become an important compliance fuel in California in recent years since renewable diesel is chemically

very similar to diesel and therefore faces fewer blending constraints than biodiesel does (EIA, 2020). Nevertheless, the carbon

intensities for biodiesel and renewable diesel are very similar, and we lack evidence that they have differential supply elasticities

(EIA, 2018c). Given this, we aggregate biodiesel and renewable diesel in this exercise.
23Our focus on longer-term scenarios also motivates our choice not to model the blend wall for either motor gasoline or motor

diesel fuel as others have recently done (e.g., Korting et al. (2019)).
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Table 1: Numerical Simulation Parameters*

Parameter Value Source

Market Parameters
Gasoline Demand Elasticity -0.2 Hughes et al. (2012); Lin and Prince (2013)
Diesel Demand Elasticity -0.1 Dahl (2012)

Gasoline Supply Elasticity 3 Dahl and Duggan (1996); Coyle et al. (2012)
Diesel Supply Elasticity 3 Dahl and Duggan (1996); Marion and Muehlegger (2011)
Corn Ethanol Supply Elasticity 3 Lee and Sumner (2010)
Cellulosic Ethanol Elasticity {0.5, 3} Assumption
Biodiesel Supply Elasticity {0.5, 3} Assumption

Marginal Damages ($/ton CO2) 100 IAWG (2016)

Gasoline Carbon Intensity (gCO2/MJ) 100 CARB (2015a)
Diesel Carbon Intensity (gCO2/MJ) 100 CARB (2015a)
Corn Ethanol Carbon Intensity (gCO2/MJ) 85 CARB (2015a)
Cellulosic Ethanol Carbon Intensity (gCO2/MJ) 30 CARB (2015a)
Biodiesel Carbon Intensity (gCO2/MJ) 30 CARB (2015a)

Initial Gasoline Price ($/gal) 2.60 EIA (2019b)
Initial Diesel Price ($/gal) 3.06 EIA (2019b)
Initial Gasoline Production (bgal) 142.2 EIA (2019a)
Initial Diesel Production (bgal) 61.3 EIA (2019a)
Initial Corn Ethanol Production (bgal) 14.4 DOE AFDC (2020b)
Initial Cellulosic Ethanol Production (bgal) {0.5, 2} Assumption
Initial Biodiesel Ethanol Production (bgal) {2.5, 10} CARB (2019b); DOE AFDC (2020a)

Policy Parameters
LCFS Constraint (gCO2/MJ) [30, 100] Assumption
RFS Constraint (%) [S0, 100] Assumption
Credit Window Price ($/gal) [0, 5] Assumption

*Notes: S0 is the initial share of biofuel, which differs across the low and high cellulosic scenario.

We simulate two different scenarios regarding cellulosic ethanol and biodiesel, the low carbon intensity

advanced biofuels. In the ‘low cellulosic/biodiesel’ scenario, we set the initial cellulosic and biodiesel produc-

tion levels at roughly their levels in 2019: 0.5 bgals and 2.5 bgals, respectively (CARB, 2019b; DOE AFDC,

2020a). The supply elasticities of both advanced biofuels are set to 0.5, reflecting current market conditions

where it is expensive to expand production of either fuel.24 In the ‘high cellulosic/biodiesel’ scenario, we set

the initial cellulosic and biodiesel production levels at 2 bgals and 10 bgals, respectively, around four times

their respective 2019 levels (CARB, 2019b; DOE AFDC, 2020a). The supply elasticities of both fuels are

set to 3 (Irwin and Good, 2017). Given our focus on medium- to long-run policies, we assume there are no

relevant blending constraints in either scenario. Thus, the only relevant cost-driver in both scenarios is from

24The 2019 RFS2 mandates for cellulosic ethanol were 418 mgals. Most RINs produced to satisfy the cellulosic mandate in

that year were produced from biogas and other non-liquid cellulosic ethanol producers, however (EIA, 2018b). Thus, despite

assuming low values for future cellulosic production, our assumptions here are likely quite generous for liquid cellulosic ethanol

production.
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the supply-side.

We assume carbon damages are $100/ton CO2e. While the most recent estimates of the average social

cost of carbon issued by the Interagency Working Group on Social Cost of Greenhouse Gases based on

a 3% discount rate is around $42/ton CO2 for 2020 and $46/ton CO2 for 2025, estimates based on the

same discount rate range from nearly zero to over $123/ton CO2 for 2020, and over $138/ton CO2 for 2025

(IAWG, 2016). We choose a higher value to illustrate the qualitative features of optimal mandates better

under various scenarios. Results are qualitatively the same for lower values for carbon damages, albeit with

less stringent optimal mandate levels. The carbon intensity (CI) values of each fuel are set to be similar to

those used by the California Air Resources Board (CARB, 2015a). Gasoline, corn ethanol, and cellulosic

ethanol CIs are set to 100, 85, and 30 gCO2/MJ, respectively. Diesel and biodiesel have assumed CIs of 100

and 30, respectively.

The policy constraints are equivalent to those used in Section 3, except that they now include multiple

renewable and fossil fuels. In particular, the RFS requires the share of renewable fuel – which now includes

corn ethanol, cellulosic ethanol, and biodiesel – to be greater than a specified volume obligation; the mandated

share α is the RFS mandate level. The LFCS requires that the average carbon intensity of all fuels – which

now include gasoline, corn ethanol, cellulosic ethanol, diesel, and biodiesel – be below a specified standard;

the mandated carbon intensity standard σ is the LCFS mandate level. The constraints are given by:

[RFS:] qETH + qCEL + qBD − α
(
qGAS + qDIES

)
≥ 0

[LCFS:] (σ − φGAS)qGAS + (σ − φDIES)qDIES + (σ − φETH)qETH + (σ − φCEL)qCEL + (σ − φBD)qBD ≥ 0,

where α is the RFS mandate level, σ is the LCFS mandate level, ‘GAS’ denotes gasoline, ‘DIES’ denotes

diesel, ‘ETH’ denotes corn ethanol, ‘CEL’ denotes cellulosic ethanol, and ‘BD’ denotes biodiesel. We nor-

malize the LCFS mandate so that the carbon intensity of fuel in the no policy equilibrium equals 1. Thus,

(1−σ)∗100 represents the percentage reduction in the carbon intensity of fuels relative to the baseline carbon

intensity required by the policy. The Lagrange multiplier on the LCFS policy constraint is denominated in

$/gal under the normalization, allowing for easy comparison with the Lagrange multiplier on the RFS policy

constraint.

From our discussion above, we know setting the LCFS mandate σ equal to zero and the credit price equal

to marginal damages will achieve the first-best outcome. Given that such a policy is infeasible, we constrain

both fuel mandates to be ‘technologically’ feasible. Specifically, we allow the RFS mandate to range from

the initial share of biofuel, S0 in Table 1, to 100%. We allow the LCFS mandate to range from the 1 to

the carbon intensity of cellulosic ethanol and biodiesel. Thus, the most stringent the LCFS can be set is to

require that all motor gasoline be cellulosic ethanol and all motor diesel be biodiesel.

Whenever compliance credits are available, the policy constraints are given by:

[RFS:] qETH + qCEL + qBD + c− α
(
qGAS + qDIES

)
≥ 0

[LCFS:] (σ − φGAS)qGAS + (σ − φDIES)qDIES + (σ − φETH)qETH + (σ − φCEL)qCEL + (σ − φBD)qBD + c ≥ 0.

The credit window price ranges from free to $5/gal.
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4.1 Second-best fuel mandates

We solve for market-clearing prices and quantities under all policy and cost containment combinations to

compare welfare outcomes across the various scenarios. We solve for the second-best policies (i.e., the second-

best RFS mandate level α and the second-best LCFS mandate level σ) using a grid search over the policy

parameters to find the welfare-maximizing level. For the policies with a cost containment mechanism, we

search over both the policy parameter (RFS mandated share α or the LCFS mandated carbon intensity

standard σ) and the level of the cost containment mechanism. Table 2 summarizes the optimal policies

under both the high and low cellulosic/biodiesel scenarios. Recall that all policies are second-best by nature.

Thus, the difference in social welfare between each scenario and the first-best social welfare is equal to the

deadweight loss (DWL) of the policy.

In both the low cellulosic/biodiesel and high cellulosic/biodiesel scenarios, the largest DWL occurs under

‘business as usual’ (BAU), which corresponds to the 2019 ‘no policy’ equilibrium. An optimally set RFS

leads to small welfare gains over business as usual, on the order of $0.24 ($2.43) billion/year in the low (high)

cellulosic/biodiesel scenario. Similarly, an optimally set LCFS decreases DWL relative to business as usual by

$0.21 ($3.81) billion/year in the low (high) cellulosic/biodiesel scenario. In all scenarios, fuel mandates with

no cost containment mechanism have a DWL exceeding $8 billion/year relative to the first-best allocation.

The largest welfare gains occur when policies are paired optimally with a credit window. This is especially

the case for the LCFS. In both scenarios and for both policies, it is optimal to set the policies at their most

stringent feasible level and offer compliance credits at a low price. Consistent with the results of our theory

model, the optimal credit window price is set such that the implicit tax on gasoline is less than marginal

damages. In particular, given the simulation parameters, marginal damages from gasoline are approximately

$1.20/gal. Under the high cellulosic/biodiesel scenario, the optimal implicit gasoline tax is approximately

$0.26/gal and $0.99/gal for the RFS and the LCFS, respectively.25 The optimal LCFS with a credit window

reduces DWL to $210–$350 million/year. Thus, while the LCFS and RFS have similar welfare effects in all

other scenarios, consistent with our theory model, an LCFS nearly eliminates DWL when it is paired with

an optimal credit window while the RFS with an optimal credit window has a DWL over $6.4 bil/year.

25Recall that, with a credit window, the implicit gasoline tax is α×p̄cred and (φc−σ)p̄cred for the RFS and LCFS, respectively.

16



Table 2: Optimal Policies and Social Welfare Outcomes Relative to the First-Best

Low Cellulosic/Biodiesel Scenario

Policy Optimal Level Welfare Loss ($ bil)

BAU $8.42

LCFS Mandated Reductions 0.70% $8.21

LCFS w/ Credit Window Mandated Reductions 79.50% $0.21
Credit Price $1.41

RFS Mandated Share 10.14% $8.18

RFS w/ Credit Window Mandated Share 100% $6.41
Credit Price $0.20

High Cellulosic/Biodiesel Scenario

Policy Optimal Level Welfare Loss ($ bil)

BAU $12.24

LCFS Mandated Reductions 4.80% $8.43

LCFS w/ Credit Window Mandated Reductions 79.50% $0.35
Credit Price $1.24

RFS Mandated Share 20.50% $9.81

RFS w/ Credit Window Mandated Share 100% $7.32
Credit Price $0.26

Notes: BAU is ‘business as usual’ and corresponds to the 2019 no policy equilibrium. The LCFS is specified as
percentage reduction from the 2019 baseline carbon intensity. The RFS is specified as the percentage biofuel
mandated. DWL is ‘deadweight loss’ and represents the social welfare loss relative to the first-best outcome.

4.2 Market effects of fuel mandates

Table 3 compares key market outcomes relative to their corresponding first-best outcomes for the high

cellulosic/biodiesel scenario.26 Every policy except the LCFS with a credit window has significantly lower

fuel prices (≈$1.10/gal lower) and higher consumer surplus than the first-best. The results illustrate a key

feature of fuel mandates. By inducing transfers between firms rather than taxing all emissions, the policies

have a much smaller price impact than a first-best policy.

26Results for the low cellulosic/biodiesel scenario are broadly similar.
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Table 3: High Cellulosic/Biodiesel Relative Market Outcomes*

Outcomes BAU LCFS
LCFS
Credit

RFS
RFS

Credit
Motor Gasoline Price ($/gal) -$1.11 -$1.10 -$0.18 -$1.09 -$0.92
Motor Diesel Price ($/gal) -$1.03 -$0.98 -$0.16 -$1.02 -$0.85
Quantities (bgals)

Gasoline 13.23 5.15 -$0.69 5.44 1.99
Corn Ethanol -1.65 7.03 2.43 8.11 10.06
Cellulosic Ethanol -2.29 0.63 0.71 -0.94 -0.66
Diesel 9.60 3.62 -0.59 6.35 4.74
Bioiesel -8.08 -1.83 0.92 -4.65 -3.33

Motor Gasoline Consumer Surplus (bil $) 164.28 162.06 26.32 161.58 135.45
Motor Diesel Consumer Surplus (bil $) 80.40 76.50 12.44 79.52 66.38
Emission Damages (MMT) 239.57 153.51 5.95 186.79 143.11

Notes: BAU is ‘business as usual’ and corresponds to the 2019 no policy equilibrium. MMT is ‘million metric tons’. All
variables are in levels relative to the corresponding first-best outcome.

Total fuel consumption is higher than the first-best equilibrium across all scenarios. The composition of

fuel, however, varies substantially. For the LCFS with a credit window, since it taxes gasoline and diesel at

a level close to the first-best, gasoline and diesel supply is closer to the first-best allocation. Because both

policies continue to either under-tax or subsidize renewable fuel, however, they typically lead to higher total

corn ethanol supply than the first-best. Biodiesel is typically under-utilized relative to first-best. While

all policies reduce emissions relative to business as usual, most reductions are modest. A second-best RFS

reduces emissions the least, with emissions decreasing 20% from business as usual. The largest emission

reductions occur under an optimal LCFS with a credit window. In this case, emissions are only slightly

higher than the first-best emissions despite having a different fuel mix.

4.3 Efficiency gains from cost containment mechanisms

The previous sections compare the relative efficiency of the policies when all parameters are set optimally.

We now study when, for a given policy, instituting a cost containment mechanism leads to efficiency gains.

For reference, Figure 1 panel (a) graphs the DWL in billion dollars on the y-axes against varying levels

of the RFS and LCFS on the x-axes. The bold horizontal line corresponds to the DWL under business as

usual. Thus, whenever the DWL under an RFS or LCFS is higher than the DWL under business as usual, the

regulator would be better served by having no policy. The optimal policies correspond to an RFS mandated

share of around 20.50%, or an LCFS that requires just over a 4.80% CI reduction.27 DWL from the policies

exceed business as usual levels if the RFS mandate is higher than 30% or the LCFS requires more than a

9% average CI reduction. Welfare losses increase sharply beyond these levels.

27Recall that the business as usual average CI is 1 in our model. Thus the second-best LCFS of σ = 0.952 corresponds to a

policy requiring a (1− 0.952)× 100 % average CI reduction.
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Figure 1: Deadweight Loss of Fuel Mandates
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Notes: Graphs plot the deadweight loss (DWL) in billion dollars on the y-axes against (a) varying levels of either the RFS or

LCFS; and (b) varying prices of either the RFS or LCFS compliance credit window for different RFS mandated shares α or

different LCFS mandated carbon intensity standards σ, respectively. In each graph, the bold horizontal line corresponds to the

DWL under ‘business as usual’ (BAU), which corresponds to the 2019 no policy equilibrium.

19



Now consider a scenario with a fixed policy stringency where the regulator can offer a credit window.

Figure 1(b) graphs DWL on the y-axes and the price of either the RFS or LCFS compliance credit window

on the x-axes for four RFS and LCFS levels. As before, the bold horizontal line corresponds to the business

as usual DWL.

When credit window prices are $0/gal, the policy is non-binding as parties collect free compliance credits.

Policies start with the same DWL as business as usual. As the credit price increases, the implicit tax and

subsidy increase. The graphs in Figure 1(b) follow the same ‘U-shape’ seen in panel (a), reflecting initial

welfare gains from effectively less stringent mandates followed by steep welfare losses as mandates become

more stringent. The credit window always binds for the most stringent policies. For the less stringent policies

– the RFS mandates at 20.5% and the LCFS mandates at a 4.8% and 12% CI reduction – the credit window

eventually becomes non-binding. In these cases, the shadow price of complying with the mandates (as given

by the Lagrange multiplier λ on the mandate constraint) is lower than the credit window price. This is

visually evident where the welfare losses relative to first-best become straight lines.28

Consider the RFS in the left graph of Figure 1(b). The thin solid line corresponds to the second-best RFS

with no cost containment provision (≈ 20.5%); the short-dashed line corresponds to approximately the long-

run EISA mandates (≈ 25%); the long-dashed line corresponds to an even more ambitious mandate (50%);

and the line with diamonds corresponds to the second-best RFS with credit window, a 100% mandate.

For a 20.5% mandate, the credit window is non-binding above $0.40/gal. The second-best RFS can be

improved slightly (≈ $16 million/year) if the regulator sets a $0.30/gal cap in RIN prices. If the regulator

sets the mandate at the levels initially envisioned under EISA (≈ 25%), the regulator can reduce DWL

by $795 million/year by offering around a $0.30/gal credit price. Thus, even at lower levels commonly

seen in regulations today, we see potentially large improvements by strategically pairing a cost containment

mechanism with an RFS. A credit window leads to larger efficiency gains when mandates are very stringent.

A 50% RFS with no cost containment mechanisms leads to a DWL exceeding $25 bil/year. With a credit

window offering, setting the credit window price optimally reduces DWL to ≈ $8 bil/year, lower than business

as usual losses. The optimal RFS-credit window corresponds to a 100% biofuel mandate and a credit window

price of $0.26/gal. Optimally setting both the RFS and credit window price reduces DWL to around $7.3

bil/year.

The right graph in Figure 1(b) presents similar results for four LCFS mandates. The thin solid line

corresponds to the second-best LCFS with a 4.8% CI reduction; the short-dashed line corresponds to an

LCFS requiring a 12% CI reduction, approximately the long-run mandates under the original LCFS; the

long-dashed line corresponds to a 50% CI reduction; and the line with diamonds corresponds to an LCFS

requiring a 78% CI reduction. A binding credit window offering does not improve the second-best LCFS,

28Figure C.1 in Appendix C shows credit purchases in each scenario in panel (b). Credit window purchases decrease as credit

window prices become higher, and reach zero when credit window prices exceed the policy constraint’s shadow price.
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i.e., DWL is lowest with a non-binding credit window price. However, a strategically set credit window

can substantially reduce DWL of an even slightly more aggressive LCFS. When the policy sets a 12% CI

reduction, approximately the long-run mandates under the original LCFS, setting a credit window price

around $0.85/gal reduces the deadweight loss of the policy by almost $7.5 billion/year. Potential reductions

are even larger for more stringent LCFS policies, consistent with our theoretical results. The most stringent

LCFS, in combination with an optimally set credit window price, nearly eliminates the DWL.

5 Discussion and Conclusion

Renewable energy mandates such as the RFS and LCFS are increasingly popular tools for policymakers

seeking to reduce carbon emissions in the energy sector. Because most renewable energy mandates rely on

advances in new technologies, a binding mandate may lead to situations with exceedingly high short-run

compliance costs. As a result, cost containment provisions can play an important role in preventing short-run

increases in compliance costs.

We show that cost containment mechanisms can substantially increase the efficiency of renewable fuel

mandates, even in the absence of uncertain compliance costs. We show that there may be substantial welfare

gains to setting a stringent policy with a low cap on compliance costs by establishing a compliance credit

window. When both the mandate level and the credit window price are set optimally, this second-best

optimal combination of the mandate level and credit window price can substantially reduce deadweight loss

from the emissions externality. Indeed, under the LCFS, when both the LCFS and the credit window price

are set optimally, this second-best optimal combination nearly eliminates deadweight loss. Importantly,

however, we show that the efficiency of an RFS – even with a second-best optimal combination of an RFS

and a credit window price – is limited by its inability to differentiate fuels based on their relative emission

intensities.

Aggressive low-carbon fuel mandates are becoming the norm, rather than the exception, in electricity

and transportation fuel markets. Our results highlight how, rather than relaxing or revisiting unrealistic

mandate levels after they are unmet, strategically setting cost containment mechanisms can substantially

increase the policies’ efficiency. Further, we derive intuitive, easy-to-calculate upper bounds to guide policy

on how to set an efficient cost containment mechanism. Namely, the policy should ensure that the implicit

fossil-fuel tax is below the first-best fossil fuel tax.

The cost containment mechanism considered here could produce substantial government revenues (Charles

River Associates, 2018). This would represent a fundamental shift in regulators’ administrative role in these

programs since transfers that take place under renewable fuel mandates rarely involve regulators collecting

revenues. While beyond the scope of this paper, these funds could have the added benefit of increasing
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funding for infrastructure programs or research and development for advanced biofuels, relaxing some of the

very constraints that may lead to high compliance costs. Such programs have ready equivalents in cap-and-

trade programs. For example, California uses proceeds from its cap-and-trade program to invest in programs

that ‘facilitate greenhouse gas (GHG) emission reductions and provide economic, environmental, and public

health benefits‘ (CARB, 2019a). The success of an intervention in compliance credit markets also depends

on the existence of a liquid market for credits. While the RIN credit market has been relatively developed

since 2009, recent price spikes in 2013 have caused some participants to question whether the market has

behaved efficiently. California’s LCFS credit market has also been characterized by low trade volumes and

large swings in the credit values. If compliance credit markets have high transaction costs or poor price

discovery, the results discussed here are not applicable. Further exploration of these issues, both analytically

and empirically, would help understand the efficiency of these policies.
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A Market Effects

A.1 Market effects of fuel mandates

We first study the effects of each fuel mandate on important market outcomes. The compliance credit price

under both an RFS and an LCFS is driven by the differences in marginal cost between the renewable and

conventional fuel. To see this, combine the two optimality conditions (1) and (2) for each mandate to yield:

[RFS:] λ =
∂Cr

∂qr −
∂Cc

∂qc

1+α

[LCFS:] λ =
∂Cr

∂qr −
∂Cc

∂qc

φc−φr .

The conditions state that λ equals the weighted difference between the renewable and conventional fuel

marginal costs. Thus, all else equal a high spread between marginal costs of renewable and conventional

fuels will lead to high compliance costs under either policy.

Equilibrium fuel prices under each mandate equal a weighted average of the marginal costs of each fuel,

where the weights correspond to the share requirement under each respective mandate. To see this, substitute

each solution for λ above into either equation (1) or (2) to obtain:

[RFS:] P = 1
1+α

∂Cc

∂qc + α
1+α

∂Cr

∂qr

[LCFS:] P = σ−φr

φc−φr
∂Cc

∂qc + φc−σ
φc−φr

∂Cr

∂qr .

The equations illustrate the similarity of the two fuel mandates.29 The distinguishing factor between the

policies is how the share mandate is constructed. The RFS share mandate is explicitly set by α, while the

LCFS share mandate is implicitly determined by the fuels’ relative carbon intensity factors.

Proposition A.1 summarizes important comparative statics with respect to the policy parameters under

a binding fuel mandate.

Proposition A.1: Market effects of fuel mandates

i Under both mandates, increasing the stringency of the policy reduces production of the conventional

fuel qc.

ii Under an RFS, increasing α increases production of renewable fuel qr if 1
ξc −

1
ηd
> α λ

P , where ξc is

the price elasticity of supply for the conventional input and ηd is the elasticity of demand.30 Under

an LCFS, decreasing σ increases production of renewable fuel qr if 1
ξc −

1
ηd
> (φc − σ) λP .

29Moreover, for the special case when α = −(σ − φc)/(σ − φr), the policy functions ϕ(qc, qr; θ) for both the RFS and the

LCFS are identical.

30Note that ξc and ηd represent local elasticities.
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• Proof of Proposition A.1:

Taking the total differential of equations (1), (2) and the policy constraint yields:
∂P
∂Q −

∂2Cc

∂qc∂qc
∂P
∂Q

∂ϕ(·)
∂qc

∂P
∂Q

∂P
∂Q −

∂2Cr

∂qr∂qr
∂ϕ(·)
∂qr

∂ϕ(·)
∂qc

∂ϕ(·)
∂qr 0


︸ ︷︷ ︸

=H


dqc

dqr

dλ

 =


−λ∂

2ϕ(·)
∂qc∂θ

−λ∂
2ϕ(·)
∂qr∂θ

−∂ϕ(·)
∂θ


︸ ︷︷ ︸

=h

dθ.

Let ηd denote the price elasticity of demand for fuel and ξi denote the price elasticity of supply for

i = c, r. Substituting ∂P
∂Q = 1

ηd
P
Q , and ∂2Ci

∂qi∂qi = 1
ξi
P
qi for i = c, r:

1
ηd

P
Q −

1
ξc

P
qc

1
ηd

P
Q

∂ϕ(·)
∂qc

1
ηd

P
Q

1
ηd

P
Q −

1
ξr

P
qr

∂ϕ(·)
∂qr

∂ϕ(·)
∂qc

∂ϕ(·)
∂qr 0


︸ ︷︷ ︸

=H


dqc

dqr

dλ

 =


−λ∂

2ϕ(·)
∂qc∂θ

−λ∂
2ϕ(·)
∂qr∂θ

−∂ϕ(·)
∂θ


︸ ︷︷ ︸

=h

dθ.

The matrix H is the bordered Hessian and is negative semi-definite by concavity of the objective

function. We can solve for dx
dθ for x ∈ {qc, qr} using Cramer’s rule:

dx

dθ
=

det(Hi)

det(H)
,

where H is the bordered Hessian and Hi(·) is the matrix H with the ith column replaced with col-

umn h. Note that det(H) > 0 for both policies.31 Thus, the signs of the effects are determined by

sign
(
det(Hi)

)
.

Solving for the RFS yields:

dqc

dα
=

(
P

ηd
− P

ξr
− λ
)

det(H)−1 < 0

dqr

dα
=

(
P

ξc
− P

ηd
− αλ

)
det(H)−1.

Considering the price effect:

dP

dα
=
∂P

∂Q

(
dqc

dα
+
dqr

dα

)
=

1

ηd
P

Q

dQ

dα
.

Solving for the LCFS yields:

dqc

dσ
=

(
(φc − φr)

(
P

ξr
− P

ηd

)
+ (σ − φr)(φc − φr)λ

)
det(H)−1 > 0

dqr

dσ
=

(
(φc − φr)

(
P

ηd
− P

ξc

)
+ (φc − σ)(φc − φr)λ

)
det(H)−1.

31To confirm this, note that det(H) = 1
ξc

P
qc
− 1

ηd
P
Q

+ α2
(

1
ξr

P
qr
− 1
ηd

P
Q

)
− 2α 1

ηd
P
Q

> 0 for the RFS and det(H) =

(σ − φc)2
(

1
ξr

P
qr
− 1
ηd

P
Q

)
+ (σ − φr)2

(
1
ξc

P
qc
− 1
ηd

P
Q

)
+ 2(σ − φc)(σ − φr) 1

ηd
P
Q
> 0 for the LCFS.
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with fuel price effects:

dP

dσ
=

1

ηd
P

Q

dQ

dσ
.

Increasing the stringency of both policies decreases qc and increases qr so long as 1
ξc −

1
ηd

is larger than

a term proportional to the ratio of the compliance credit price and the fuel price, λ
P . Thus, if the supply of

conventional fuel or the demand for fuel are relatively inelastic, increasing the stringency of either policy will

increase qr. Intuitively, if consumers do not decrease consumption or conventional suppliers do not reduce

their supply as the policies become more stringent, the only means to maintain compliance is to increase

the supply of renewable fuel. If, however, consumers reduce fuel consumption or fossil fuel producers reduce

production in response to increases in the stringency of the policies, qr does not necessarily need to increase

to maintain compliance. The effect of the mandates on fuel prices depends on total fuel supply response. It

can be shown that a necessary condition for the policy to increase fuel price P is ξc > ξr, i.e., fuel prices

increase as the policies become more stringent if the supply elasticity of the conventional fuel is greater than

the renewable supply elasticity.32

Figure A.1 illustrates the effects of both policies. The left figure graphs the no policy equilibrium, and

the right figure graphs equilibrium under a fuel mandate. In both graphs, the downward sloping line is the

fuel demand curve; the upward sloping line with triangles is the conventional fuel supply curve; the upward

sloping line with circles is the renewable fuel supply curve; and the bold upward sloping line is the total fuel

supply curve, equal to the horizontal sum of the renewable and conventional supply curves.

In the left figure, the total and conventional fuel supply curves are the same until the price reaches the

intercept of the renewable fuel supply curve. The initial market-clearing price P0 and total fuel quantity Q0

are found where the total fuel supply curve intersects the demand curve. The supply of conventional and

renewable fuel, qc0 and qr0, respectively, is given by the corresponding quantity where the equilibrium price

intersects the individual supply functions.

The right graph illustrates equilibrium under a binding fuel mandate, with the solid lines representing

the initial supply curves and the dashed lines representing the supply curves net of the fuel mandate’s

implicit subsidy and tax. Under both policies, the renewable supply curve shifts down, and the conventional

supply curve shifts up until the market-clearing price and quantities are such that the equilibrium quantities

comply with the mandate. The equilibrium price PM and quantity QM are found where the new dashed

total fuel supply curve, equal to the sum of the shifted conventional and renewable supply curves, intersects

the demand curve. In our example, the resulting equilibrium results in greater production of renewable fuel

qrM and lower production of conventional fuel qcM . Because total fuel consumption QM declines, the policy

results in higher fuel prices PM over the no policy equilibrium.

32Fischer (2010) derives analogous results for the effect of Renewable Portfolio Standards on wholesale electricity prices.
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Figure A.1: Market Effects of Fuel Mandates*
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Notes: The left figure illustrates the no policy equilibrium, and the right graphs the equilibrium under a fuel mandate. The

downward sloping line is the fuel demand curve, the upward sloping line with triangles is the conventional fuel supply curve,

the upward sloping line with circles is the renewable fuel supply curve, and the bold upward sloping line is the total fuel supply

curve.

A.2 Market effects of cost containment mechanism

We next examine the market effects of a cost containment mechanism that caps compliance costs. We model

the cost containment mechanism as the regulator offering a credit window for compliance credits. Under a

credit window, firms have the option to purchase compliance credits directly from the regulator at a given

credit window price. The credits purchased from the regulator would not be associated with the production

of any renewable fuel but would increase liquidity in the market.

Let c > 0 denote the number of credits bought from the regulator through the window and p̄cred be the

credit window price. Proposition A.2 summarizes the comparative statics for the credit window price p̄cred

when firms purchase from the credit window.

Proposition A.2: Suppose firms purchase from the credit window such that λ = p̄cred. Under both fuel

mandates as the credit window price p̄cred increases:

i The volume qc of conventional fuel decreases and the volume qr of renewable fuel increases; and
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ii The quantity c of compliance credits decreases.

• Proof of Proposition A.2:

Taking the total differential of equations (1), (2), and the policy constraint yields:
1
ηd

P
Q −

1
ξc

P
qc

1
ηd

P
Q 0

1
ηd

P
Q

1
ηd

P
Q −

1
ξr

P
qr 0

∂ϕ(·)
∂qc

∂ϕ(·)
∂qr 1


︸ ︷︷ ︸

=H


dqc

dqr

dc

 =


−∂ϕ(·)

∂qc

−∂ϕ(·)
∂qr

0


︸ ︷︷ ︸

=h

dp̄cred.

We can derive the comparative statics using Cramer’s rule. For the RFS, this yields:

dqc

dp̄cred
=

(
1

ηd
P

Q
+ α

(
1

ηd
P

Q
− 1

ξr
P

qr

))
det(H)−1 < 0

dqr

dp̄cred
=

(
1

ηc
P

qc
− (1 + α)

1

ηd
P

Q

)
det(H)−1 > 0

dc

dp̄cred
=

(
α2

(
1

ηd
P

Q
− 1

ξr
P

qr

)
+

1

ηd
P

Q
− 1

ξc
P

qc
+ 2α

1

ηd
P

Q

)
det(H)−1 < 0.

Next consider the LCFS:

dqc

dp̄cred
=

(
(φc − σ)

(
1

ηd
P

Q
− 1

ξr
P

qr

)
+ (σ − φr) 1

ηd
P

Q

)
det(H)−1 < 0

dqr

dp̄cred
=

(
(σ − φr)

(
1

ξc
P

qc
− 1

ηd
P

Q

)
− (φc − σ)

1

ηd
P

Q

)
det(H)−1 > 0

dc

dp̄cred
=

(
(φc − σ)2

(
1

ηd
P

Q
− 1

ξr
P

qr

)
+ (σ − φr)2

(
1

ηd
P

Q
− 1

ξc
P

qc

)
+ 2(φc − σ)(σ − φc) 1

ηd
P

Q

)
det(H)−1 < 0.

A-5



B Intuition for Inefficiency of Mandates

B.1 Mandates and marginal abatement costs

For additional intuition for the second-best nature of fuel mandates relative to a first-best cap-and-trade

program, we analyze how the marginal abatement cost per unit of emissions relates to the permit price under

a cap-and-trade program. We then compare it to how the marginal abatement cost per unit of emissions

relates to the credit price under a fuel mandate.

With a cap-and-trade permit system, the first-order condition for an interior solution for each fuel i ∈

{c, r} is given by:

P − ∂Ci

∂qi
= τφi, (B.1)

where τ is the permit price.

For each fuel i ∈ {c, r}, the marginal abatement cost per unit of output is given by P − ∂Ci

∂qi , while the

marginal abatement cost MACi per unit of emissions is given by:

MACi =

(
P − ∂Ci

∂qi

)
/φi. (B.2)

In a cap-and-trade permit system, the marginal abatement cost MACi per unit of emissions given by

equation (B.2) equals the permit price τ for each fuel i. As a consequence, a cap-and-trade permit system

can achieve the first-best when the permit price equals marginal damages: τ = D′(·). Under the first-best

cap-and-trade permit system, the marginal abatement cost MACi per unit of emissions is equalized across

both fuels i and set equal to marginal damages: MACi = D′(·) ∀i.

In contrast, for fuel mandates, the marginal abatement cost MACi per unit of emissions does not equal

the credit price λ. Formally, for fuel mandates, the analogous first-order conditions are:

[qc :] P − ∂Cc

∂qc = λα (B.3)

[qr :] P − ∂Cr

∂qr = −λ (B.4)

for the RFS, and:

[qc :] P − ∂Cc

∂qc = λ (φc − σ) (B.5)

[qr :] P − ∂Cr

∂qr = −λ (σ − φr) (B.6)

for the LCFS.
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Once again, for each fuel i ∈ {c, r}, the marginal abatement cost per unit of output is given by P − ∂Ci

∂qi ,

while the marginal abatement cost MACi per unit of emissions is given by equation (B.2). The fuel mandate

credit price λ does not equal the marginal abatement cost per unit of emissions, however. Instead, from the

first-order conditions in equations (B.3) and (B.4), the RFS credit price λ is given by the following:

[qc :]
(
P − ∂Cc

∂qc

)
/α = λ (B.7)

[qr :] −
(
P − ∂Cr

∂qr

)
= λ. (B.8)

Likewise, from the first-order conditions in equations (B.5) and (B.6), the LCFS credit price λ is given

by the following:

[qc :]
(
P − ∂Cc

∂qc

)
/ (φc − σ) = λ (B.9)

[qr :] −
(
P − ∂Cr

∂qr

)
/ (σ − φr) = λ. (B.10)

Fuel mandates implicitly tax conventional fuels and subsidize renewable fuels. With the RFS, this is because

a firm generates credits from the production of renewable fuel, even though the renewable fuel may have a

non-zero emissions factor φr. With the LCFS, this is because a firm only requires (generates) credits based

on how much the carbon intensity φi of the fuel i = c, r exceeds (is lower than) the average carbon intensity

σ mandated by the LCFS standard.

Substituting in the marginal abatement cost MACi per unit of emissions given by equation (B.2) into

equations (B.7)-(B.10) for the fuel mandate credit price λ, we get:

[qc :] MACc = λα/φc (B.11)

[qr :] MACr = −λ/φr (B.12)

for the RFS, and:

[qc :] MACc = λ (φc − σ) /φc (B.13)

[qr :] MACr = −λ (σ − φr) /φr (B.14)

for the LCFS.

Thus, in contrast to a cap-and-trade program, for fuel mandates, the marginal abatement cost MACi

per unit of emissions does not equal the credit price, and is not equalized across fuels i. As a consequence,

mandates cannot achieve the first-best. The RFS provides an implicit subsidy for renewable fuels even if
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the renewable fuel may have a non-zero emissions factor φr, meaning the RFS does not give an incentive to

reduce the emissions from these fuels. Similarly, for fuels with carbon intensities φr lower than the average

carbon intensity σ mandated by the LCFS, the LCFS provides an implicit subsidy even if the carbon intensity

of that fuel is non-zero, meaning the LCFS does not give an incentive to reduce the emissions from these

fuels.

B.2 Graphical representation of second-best mandates

Figure B.1 illustrates the inefficiency of the mandates graphically. The solid circles are iso-welfare curves

that exclude pollution damages. The dashed circles are iso-welfare curves when pollution externalities are

internalized.33 In the absence of any policy, the competitive market maximizes the sum of consumer and

producer surplus at point A, which differs from the social optimum, point B.

To align the competitive and first-best outcome, a regulator can either tax emissions or institute a cap-

and-trade program, illustrated in Figure B.1(a). Iso-emissions curves are the parallel downward-sloping lines

and have slope (−φc/φr). The dashed downward-sloping line corresponds to emissions under the no policy

outcome. If the government institutes a cap-and-trade program setting the cap at the first-best emission

level, represented by the solid downward-sloping line, the competitive market outcome will correspond to

the social optimum.

Now consider the efficiency of fuel mandates, illustrated in Figure B.1(b). We represent both policies as

rays from the origin, where the slope of the ray corresponding to the share of renewable fuel required by

the policy. A binding share mandate must pass to the left of the initial share of renewable fuels given by

the dashed ray passing through point A. Consider the effect of a binding mandate given by the solid ray.

Under the fuel mandate, firms maximize profits at C, resulting in higher renewable and conventional fuel

production and higher emissions than the efficient outcome B.

To illustrate that fuel mandates cannot achieve the first-best outcome, suppose the regulator knows the

share of renewable fuels or the carbon intensity of fuels under the first-best outcome and sets the mandate

at this level, represented by the dotted line through point B. Despite being set at the optimal share, the

market maximizes profits at D, away from the first-best outcome. This is due to the subsidy the policies

provide for renewable fuel, which reduces the price impact of the policy.

33Specifically, the solid circles represent level curves of the function U(Q)−Cc(qc)−Cr(qr), and the dashed circles represent

level curves of the function U(Q)−Cc(qc)−Cr(qr)−D(φcqc + φrqr), where U(Q) is the total benefit from fuel consumption.

When the marginal utility of income is constant, the total benefit from fuel consumption Q is given by the area under the

demand curve, which measures the gross consumer surplus. Weitzman (2003) shows that using the area under the demand

curve in place of firm revenue yields the same outcome as a perfectly competitive market (Lin and Wagner, 2007; Lin, 2009;

Lin et al., 2009; Lin Lawell, 2021).

B-3



Thus, owing to their implicit subsidy on renewable fuels, whenever unpriced emissions are the sole market

failure, fuel mandates are unable to replicate the first-best solution (Helfand, 1992; Holland et al., 2009; Lapan

and Moschini, 2012).
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Figure B.1: First-best, competitive outcome, and fuel mandates
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C Additional Simulation Results

Figure C.1: Compliance Credit Purchases
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Notes: The graphs plot the compliance credits purchased on the y-axes against compliance credit prices on the x-axes for

different RFS mandated shares α and different LCFS mandated carbon intensity standards σ, respectively.
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